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Although there is much evidence for age differences in behavioural responses to psychostimulants in rats, the
differential, lasting impact of drug exposures has rarely been investigated using direct comparisons of
adolescent and adult rats. Male rats were pre-treated with 0.5 mg/kg amphetamine or saline on either
postnatal days (P) 31 and P33 or P76 and P78, and locomotor activity was measured for 1 h. Adolescent, and
not adult, rats showed a significant increase in distance traveled from the first to second pre-treatment. There
was no evidence of sensitization of locomotor activity in either adolescents or adults on Challenge 1 to the
same dose of amphetaminewhen tested 12 days later on P45 (late adolescence) or on P90. Rats that were pre-
treated as adolescents exhibited locomotor sensitization to 1.5 mg/kg amphetamine as adults (P60) on
Challenge 2, 27 days after pre-treatment, particularly in the group that had also received amphetamine on
Challenge 1 at P45. Rats that were pre-treated as adults did not show sensitization on Challenge 2. The results
suggest that the rapid adaptations to drug exposures in adolescence have greater consequences than identical
treatment in adulthood, and highlight the unique vulnerability of adolescents to brief, low dose drug
exposure.
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1. Introduction

Adolescents are less sensitive than are adults to psychostimulants
at first drug exposure (Weiss et al., 1994), and they transition from
drug use to dependence more rapidly than do adults (Wu and
Schlenger, 2003). Moreover, risk for drug abuse in adulthood is
greater in individuals who initiated first use in adolescence (Merline
et al., 2004), suggesting that exposure to psychostimulants in
adolescence may have unique and lasting effects on sensitivity to
psychostimulants in adulthood. Elevated risk for addiction in
adolescence has been attributed in part to the heightened novelty
seeking of adolescents (reviewed in Doremus-Fitzwater et al., 2010).
The neural pathways that mediate novelty-seeking, most notably the
mesocorticolimbic dopamine system (reviewed in Bardo et al., 1996),
are also sites of action of psychostimulants, indicating that extensive
developmental remodelling of this circuitry may underlie the
differential vulnerability of adolescents and adults to drugs of abuse
(e.g., Ernst et al., 2009). The changes in mesocorticolimbic circuitry in
adolescence are similar in people and in rats and include increased
dopamine transporter (people: Haycock et al., 2003; rats: Moll et al.,
2000) and dopamine receptor (people:Montague et al., 1999; Seeman
et al., 1987; Weickert et al., 2007) (rats: Andersen, 2003; Andersen
et al., 1997, 2000; Tarazi and Baldessarini, 2000; Tarazi et al., 1998)
density in adolescence.

In rodents, adolescence begins shortly after weaning and can be
divided into 3 stages (Tirelli et al., 2003): Early adolescence spans the
period after weaning and before puberty, lasting from approximately
postnatal days 21 (P21) to P34. Mid-adolescence encompasses the
time shortly before and after puberty and lasts from P34 to P45, with
puberty (as indicated by balanopreputial separation) occurring at
approximately P42 in males (reviewed in McCormick and Mathews,
2007). Late adolescence begins on P45 and lasts until P60, when rats
attain sexual maturity. As in people, adolescent rodents exhibit
increased levels of novelty seeking (Stansfield et al., 2004) and altered
sensitivity to psychostimulants (Spear, 2000) compared to adults,
indicating that studies with rodent models of adolescence can provide
valuable insight into vulnerability to drug abuse in people. Consistent
with age differences in psychostimulant sensitivity in people, studies
with rodents find that adolescents are less sensitive to the locomotor
activating effects of acute psychostimulant treatment than are adults
(e.g., Adriani and Laviola, 2000; Bolanos et al., 1998; Lanier and
Isaacson, 1977; Mathews andMcCormick, 2007; Mathews et al., 2010,
2009), and more sensitive to the locomotor sensitizing effects of
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repeated psychostimulant treatment compared to adults (Adriani
et al., 1998; Laviola et al., 1999; Mathews and McCormick, 2007;
Schramm-Sapyta et al., 2004). We have found that adolescent (~P30),
and not adult, rats show a significant increase in locomotor activity in
response to a second injection of amphetamine 24 h after the first
injection (Mathews et al., 2009), which suggests an increased
susceptibility to rapid sensitization in adolescence. In addition, these
latter studies involved testing confined to the adolescent period
compared to the adult period, and did not address the extent to which
any differences observed after adolescent treatment persist into
adulthood.

The few studies that have investigated possible lasting effects of
psychostimulant treatment in adolescence have involved high doses
and/or long periods of pre-treatment, and rarely involved a
comparison group for which pre-treatment occurred in adulthood,
which is necessary to characterize the developmental-specificity of
drug effects. For example, repeated pre-treatment with a high dose of
amphetamine (2.0–10 mg/kg) (Kolta et al., 1990; McPherson and
Lawrence, 2005) or cocaine (10–15 mg/kg) (Marin et al., 2008; Ujike
et al., 1995) in adolescence induced locomotor sensitization to a
challenge dose of the drug in adulthood. Other studies have reported a
sensitized response to amphetamine (Burton et al., 2010; Valvassori
et al., 2007) and to cocaine (Achat-Mendes et al., 2003; Adriani et al.,
2006; Brandon et al., 2001) in adulthood after chronic methylpheni-
date treatment in adolescence (but see Ferguson and Boctor, 2010),
clearly indicating that repeated drug treatment in adolescence can
induce locomotor sensitization in adulthood. Nevertheless, it is not
known whether the effects described in the latter studies are unique
to pre-treatment in adolescence, or if similar effects would be
observed in rats pre-treated in adulthood. Studies using nicotine
and methylphenidate that directly compared the effects of pre-
treatment in adolescence or in adulthood suggest that lasting effects
may depend on age. Whereas chronic methylphenidate treatment
(2 mg/kg twice a day for 15 days) in adulthood had no effect on
locomotor activity, the same pre-treatment in early adolescence (P20
to P35) reduced sensitivity to the locomotor activating effects of
cocaine in adulthood (Andersen et al., 2001). In contrast, pre-
treatment with nicotine (0.4 mg/kg twice a day for 7 days) in
adolescence, but not in adulthood, enhanced locomotor sensitization
to amphetamine 30 days later in adulthood (Collins et al., 2004). The
latter studies suggest that lasting effects of chronic drug exposuremay
be greater in adolescents than in adults.

Here, we test the hypothesis that brief, low dose amphetamine
exposures experienced in adolescence may be sufficient to increase
the vulnerability to later drug exposures, and thus the present study
involves a different approach than that of previous studies, which
involved higher doses and/or more numerous pre-treatment injec-
tions. The treatment regimen we used [two injections of 0.5 mg/kg
amphetamine, which falls in the therapeutic dose range for ADHD
(Heijtz et al., 2003) and in the low to moderate dose range for
enhancement of locomotor activity (Gulley et al., 2007)], was based
on our previous finding that early adolescent, but not adult rats,
exhibited rapid behavioural sensitization to a low dose of amphet-
amine after a single pre-treatment 24 h earlier (Mathews et al., 2009).
Here, our goal was to determine whether such rapid sensitization in
adolescent rats is temporary or would the effects of such a treatment
regimen be observed after much longer intervals. The expression of
behavioural sensitization after pre-treatment was examined at two
different time points, once in later adolescence (12 days after pre-
treatment) and again in adulthood (27 days after pre-treatment).
Others have found that adolescent pre-treatment with amphetamine
altered locomotor sensitization to amphetamine only in adulthood
and not in adolescence (P37) (Santos et al., 2009), indicating that
the expression of sensitization may depend on age. We have found
that early (P30) and not late (P45) adolescent rats develop rapid
sensitization to a second injection of 0.5 mg/kg of amphetamine
24 h after the first injection (Mathews et al., 2009), indicating that
susceptibility to sensitization at this dose is reduced in late
adolescence. Thus, the first challenge day for the adolescent pre-
treatment group occurred in late adolescence (P45) to determine
whether late adolescent rats would express sensitization at this dose
when amphetamine pre-treatment occurred in early adolescence
(P31, P33). The second amphetamine challenge occurred 15 days after
the first challenge, when the rats were adults (P60). The second
challenge involved a higher dose of amphetamine (1.5 mg/kg) to
improve the likelihood of detecting pre-treatment effects 27 days
after pre-treatment, as the use of high challenge doses facilitates the
expression of sensitization when a low pre-treatment dose is used
(Kuczenski and Segal, 2001). Lastly, to test for the developmental
specificity of the pre-treatment regimen, a group of rats underwent
pre-treatment in adulthood, and was tested for behavioural sensiti-
zation after the same intervals (12 and 27 days) as those rats pre-
treated in adolescence. Behavioural sensitization to amphetamine in
the 0.5–0.6 mg/kg dose range has been found in adult rodents after
lengthy pre-treatments with several repeated injections (e.g., Hall
et al., 2008; Kelsey and Grabarek, 1999). We predicted that the use
of a short pre-treatment regimen that is known to have different
effects on sensitization of adolescent and adult rats in the short-term
(Mathews et al., 2009) would also reveal age differences in long-
lasting sensitization.

2. Method

2.1. Animals

Male Long Evans rats were purchased from Charles River (St.
Constant, QC, Canada) and arrived at the colony on either postnatal
day 22 (P22; N=34) or P60 (N=34). Rats were housed in pairs and
maintained on a 12 h light–dark cycle with lights on at 0800 h. Use of
animals was approved by the Brock University Animal Care and Use
Committee and followed the Canadian Council on Animal Care and
National Institutes of Health guidelines.

2.2. Locomotor activity testing

Locomotor testing was conducted in four white open top
melamine arenas (58 cm×58 cm×58 cm) under indirect red light
illumination to reduce anxiety associated with bright lighting. On P30
or P75, rats received an intra-peritoneal injection of saline and were
immediately placed into the test arena for 1 h of habituation. The pre-
treatment phase began the next day and rats were randomly assigned
to receive 0.5 mg/kg of amphetamine (n=16 at each age) or saline
(n=18 at each age) immediately before placement into the
locomotor test arenas for 1 h on each of two pre-treatment days,
48 h apart. Locomotor activity during the test sessions was recorded
with a Sony digital video camera mounted from the ceiling and
connected to the Smart tracking system (Smart; Panlab; Spain) that
measured horizontal distance traveled. The first challenge day
(Challenge 1) took place 12 days after pre-treatment on either P45
or P90 (see Table 1 for the experimental design).

For Challenge 1, rats in each drug pre-treatment group were
assigned to receive either saline or 0.5 mg/kg of amphetamine. The
second challenge (Challenge 2) took place another 15 days later when
all rats were adult (either P60 or P105). Rats from each age at time of
pre-treatment group were further divided into five groups: Rats that
received saline during pre-treatment and saline on the first challenge
day received either saline (SSSS group) or 1.5 mg/kg amphetamine
(SSSA group) for Challenge 2, and rats that received saline during the
pre-treatment phase and 0.5 mg/kg amphetamine on the first
challenge day received 1.5 mg/kg amphetamine (SSAA) on Challenge
2. Rats that were treated with 0.5 mg/kg amphetamine during pre-
treatment and saline on challenge 1 received 1.5 mg/kg amphetamine



Table 1
Experimental design.

Adolescent ages (days) 30 31 // 33 // 45 // 60

N=34 Saline (S)
n=18
(SS)

S n=12 (SSS)
A n=6 (SSA)

S n=6
(SSSS)
A n=6
(SSSA)
A n=6
(SSAA)

Amphetamine (A)
n=16 (AA)

S n=8 (AAS)
A n=8 (AAA)

A n=6 (AASA)
A n=6 (AAAA)

Phases of the experiment Habituation Induction (0.5 mg/kg) Challenge 1 (0.5 mg/kg) Challenge 2 (1.5 mg/kg)

N=34 Saline (S)
n=18 (SS)

S n=12 (SSS)
A n=6 (SSA)

S n=6 (SSSS)
A n=6 (SSSA)
A n=6 (SSAA)

Amphetamine (A)
n=16 (AA)

S n=8 (AAS)
A n=8 (AAA)

A n=6 (AASA)
A n=6 (AAAA)

Adult ages (days) 75 76 // 78 // 90 // 105
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(AASA) on Challenge 2. The final group of rats received amphetamine
at all time points: 0.5 mg/kg during pre-treatment and on Challenge 1
and 1.5 mg/kg on Challenge 2 (AAAA) (see Table 1 for the
experimental design). Each rat was always tested in the same arena.
All testing occurred between 0900 h and 1700 h and time of testing
was counterbalanced across groups.
2.3. Statistics

Analyses consisted of mixed-factor ANOVA for pre-treatment days
and between-groups ANOVA for Challenges 1 and 2. Follow-up
analyses for within-group comparisons were conducted using paired-
samples t-test, and for between group comparisons, follow-up
analyses consisted of Fisher's least significant difference (LSD) test.
Alpha level for statistical significance was set at pb0.05, two-tailed,
however, tests of a priori hypotheses with alpha levels of pb0.10 two-
tailed are noted.
Fig. 1. Mean (±SEM) distance traveled during the two days of pre-treatment with
saline or 0.5 mg/kg of amphetamine in adolescent or adult rats. *p=0.04 compared to
activity on first pre-treatment day in amphetamine-treated adolescents; **p=0.01
compared to activity in on first pre-treatment day in saline-treated adolescents.
3. Results

3.1. Locomotor activity in the pre-treatment phase

A Pre-treatment Day (Pre-treatment 1, Pre-treatment 2)×Pre-
treatment drug group (SS, AA)×Age (P30, P75) ANOVA on distance
traveled found a significant Pre-treatment Day×Pre-treatment drug
group interaction (F1,64=12.30, p=0.001) and a near significant Pre-
treatment Day×Age×Pre-treatment drug group interaction
(F1,64=3.75, p=0.057). Follow up analyses were conducted by age
to test the hypothesis that activity would increase from the first to the
second pre-treatment in adolescent, but not in adult rats. For
adolescent rats, a Pre-treatment Day×Pre-treatment Group ANOVA
revealed a significant interaction (F1,32=10.11, pb0.01): For rats
treated with saline, distance traveled decreased from the first to the
second pre-treatment (p=0.01) and for rats treated with amphet-
amine, distance traveled increased from first to second amphetamine
pre-treatment (p=0.04). In adulthood, there was no change in
distance traveled for either saline or amphetamine treated rats (see
Fig. 1).

For saline treated rats, adolescents were significantly less active
than were adults during the first (p=0.05) and second (pb0.0001)
days of pre-treatment, whereas the age difference between adoles-
cent and adult rats after amphetamine treatment approached
significance only during the first day of pre-treatment (p=0.065;
adolescentbadult) (see Fig. 1).
3.2. Locomotor activity in Challenge 1

An Age×Pre-treatment Drug×Challenge 1 Drug ANOVA on
distance traveled on Challenge 1 revealed a main effect of Age
(F1,60=11.43, p=0.001; adolescentb than adult) and a main effect of
Challenge 1 Drug (F1,60=122.83, pb0.0001), with amphetamine
treated rats more active than saline treated rats irrespective of pre-
treatment drug (main effect of Pre-treatment drug, p=0.09). There
were no significant interactions among factors (all pN0.14). This
pattern of results did not change when the analyses were conducted
for each age group separately (see Fig. 2).

3.3. Locomotor activity in Challenge 2

Because Challenge 2 did not involve a balanced design, the data for
Challenge 2 were analyzed with two different approaches. The first
approach considered the five Challenge 2 groups (SSSS, SSSA, SSAA,
ASAA, and AAAA) as levels of one-factor. For rats pre-treated in
adolescence (F4,29=15.44, pb0.0001), all rats that received amphet-
amine for Challenge 2 were more active than rats that received saline
(all pb0.0001). History of amphetamine treatment also had a
significant effect on locomotor activity after an amphetamine
challenge, such that rats that received amphetamine during pre-
treatment and Challenge 1 (AAAA) were more active than both saline
pre-treatment groups, whether or not they had amphetamine on
Challenge 1 (SSSA, p=0.04; SSAA, p=0.02). The higher activity of



Fig. 2. Mean (±SEM) distance traveled after treatment with saline or 0.5 mg/kg of
amphetamine on Challenge 1, 12 days after pre-treatment. Locomotor activity after
amphetamine is shown in shaded bars. Main effect of age (p=0.001), of Challenge 1
drug treatment (pb0.0001), and of Pre-treatment drug (p=0.09); no interaction of the
factors (all pN0.20).

Fig. 4. Distance traveled on Challenge 2 in 5 min blocks illustrates the same pattern and
degree of activity to amphetamine over time irrespective of whether pre-treated with
amphetamine or with saline in adults, but nor adolescents.
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AAAA rats than AASA rats missed significance (p=0.07). For adult
pre-treated rats (F4,29=10.33, pb0.0001), rats in all four groups that
received amphetamine for Challenge 2 were more active than the
group that received saline (all pb0.0001), but no other group
difference was significant (see Fig. 3).

The second approach was to have a balanced design for statistical
analysis by removing the group treated with saline throughout the
experiment (SSSS). A Pre-treatment drug group×Challenge 1 drug
group ANOVA of distance traveled in Challenge 2 for rats pre-treated
in adolescence found that the higher locomotor activity in rats pre-
treated with amphetamine compared to rats pre-treated with saline
missed statistical significance (F1,24=3.59, p=0.07). No group
difference approached significance for rats pre-treated as adults (see
Fig. 3).

To address the possibility that adult rats did not express locomotor
sensitization because of an enhanced expression of stereotypy on the
second challenge day, locomotor activity over 5 min time blocks is
shown for adult rats that were repeatedly treated with amphetamine
(AAAA) and for the rats that were receiving amphetamine for the first
time (SSSA) in Fig. 4.
Fig. 3. Mean (±SEM) distance traveled on Challenge 2. **Within age group, rats given
saline on challenge 2 (SSSS; white bar) were lower than each of the other groups, each
of which received 1.5 mg/kg of amphetamine (grey and black bars, all pb0.0001).
Differences among the amphetamine-treated groups are indicated on the figure.
4. Discussion

Consistent with our hypothesis, a brief treatment regimen with
low doses of amphetamine in early adolescence led to a lasting change
in locomotor activity to subsequent exposures, highlighting the
heightened sensitivity of adolescents compared to adults to drug-
induced behavioural plasticity. First, a low dose of amphetamine in
adolescence, not in adulthood, increased the locomotor activating
effects of a second injection of amphetamine given 48 h later. Second,
the rapid sensitization observed during the two days of pre-treatment
in adolescence was associated with long-lasting locomotor sensitiza-
tion to amphetamine, whereas pre-treatment was without effect on
later responses to amphetamine in adults. Third, the enhanced
sensitization observed on the second challenge day in adulthood
can be attributed primarily to a combinatorial effect of amphetamine
treatment during early and late adolescence. That the same treatment
regimen in adult rats had no lasting effect on the locomotor activating
effects of amphetamine is consistent with adolescence as a unique
period of sensitivity to the enduring effects of psychostimulants. Each
of these findings and their implications are discussed in greater detail
in the following section.

4.1. Locomotor activity during pre-treatment

Consistent with previous reports of hyporesponsivity to an acute
exposure to psychostimulants in adolescence (e.g., Adriani and
Laviola, 2000; Bolanos et al., 1998; Lanier and Isaacson, 1977;
Mathews et al., 2010), we found a trend for reduced locomotor
activity in adolescent compared to adult rats to the first dose of
amphetamine during the pre-treatment phase. In addition, only
adolescent rats exhibited a significant increase in the locomotor
activating effects of amphetamine on the second pre-treatment day,
confirming our previous report of rapid amphetamine-induced
behavioural plasticity in adolescence (Mathews et al., 2009). The
increased activity in adolescents on the second test day eliminated the
age differences that were observed for the first amphetamine
treatment, indicating that the initial hyporesponsiveness cannot be
attributed to age differences in amphetamine pharmacokinetics or to
reduced locomotor capacity in adolescents than in adults. Other
studies have found that pharmacokinetic factors do not account for
age differences in locomotor activity, in that the brain levels of
amphetamine, cocaine, or methamphetamine did not explain age
differences in locomotor activity (Frantz et al., 2006; Spear and Brake,
1983; Zombeck et al., 2009). Furthermore, we have found adolescent
and adult rats to differ in locomotor activity after a range of acute
doses of amphetamine administered via cannulae directly into the
nucleus accumbens (Mathews and McCormick, 2009).

image of Fig.�2
image of Fig.�3
image of Fig.�4
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The increase in activity found in the present study to a second
treatment of amphetamine cannot be attributed to a nonspecific
increase in exploratory activity in adolescence, because adolescent
saline-treated rats traveled less on the second than on the first day of
pre-treatment. We have argued that the rapid change in the
locomotor response to amphetamine in adolescence may reflect
greater plasticity in the mesolimbic circuitry in adolescents than in
adults (Mathews et al., 2009), which is consistent with the report of a
lower release of striatal dopamine in adolescent than in adult rats
after acute treatment of amphetamine, and a higher release in
adolescent rats than in adult rats after repeated treatment of
amphetamine (Laviola et al., 2001). One potential problem in the
interpretation of age effects in the present experiment is that different
lengths of acclimation to the colony in adolescent (8 days) and adult
(15 days) rats may have resulted in age-specific effects of transpor-
tation stress on locomotor activity. Nevertheless, it is unlikely that
transportation stress accounts for age differences during the pre-
treatment phase, as we have found the same result of rapid
behavioural sensitization to a second dose of amphetamine in
adolescents and not in adults in rats that were reared in our colony
and were thus not exposed to the stress of transportation (Mathews
et al., 2009).

4.2. Locomotor activity on Challenge day 1

Adolescent and adult pre-treated rats were tested for locomotor
sensitization to 0.5 mg/kg of amphetamine 12 days after pre-
treatment (Challenge 1) when the adolescent group was post-
pubertal (P45). Locomotor sensitization was not observed in either
adolescent or adult rats at this time point, although activity appeared
to be slightly higher in rats of both age groups that were pre-treated
with amphetamine compared to the age-matched groups pre-treated
with saline. In addition, adolescent rats were less active than were
adults on Challenge 1, irrespective of drug treatment. We previously
found that, in contrast to P30 rats for which adult-like activity was
evident after a second treatment of amphetamine, P45 rats remained
hyporesponsive (Mathews et al., 2009), indicating that there are
significant developmental shifts in drug responses within the time
span conventionally considered adolescence. Early and late adoles-
cent rats differ on various behavioural and neural parameters,
including conditioned place preference (Badanich et al., 2006;
Brenhouse et al., 2008), cocaine-induced locomotor activity (Badanich
et al., 2008), cocaine-induced dopamine release in the nucleus
accumbens (Badanich et al., 2006), tyrosine hydroxylase immuno-
reactivity in the caudate nucleus (Mathews et al., 2009) and
dopamine receptor expression throughout the mesocorticolimbic
dopamine system (Andersen et al., 1997, 2000). Thus, lower
locomotor activity in P45 rats compared to adult rats is likely a
reflection of a developmental shift in neural regions that regulate the
locomotor activating effects of psychostimulants.

The lack of expression of locomotor sensitization in rats that were
challenged with amphetamine in late adolescence is consistent with a
lack of sensitization during adolescence reported by others. For
example, cross-sensitization to amphetamine after 7 days of nicotine
pre-treatment in early adolescence was not found if the challenge test
also occurred in adolescence, but it was found if the challenge test
occurred in adulthood (Santos et al., 2009). Similarly, effects of MDMA
pre-treatment in adolescence on locomotor sensitization to cocaine
increased with longer delays between pre-treatment and challenge
day (Achat-Mendes et al., 2003). Twice daily pre-treatment with
0.5 mg/kg of amphetamine from P22 to P34 also failed to produce
sensitization in rats when the test for sensitization occurred in late
adolescence (~P48) (Heijtz et al., 2003), but this study did not involve
additional testing in adulthood. Another explanation for the lack of
sensitization on Challenge 1 may be that the dose of amphetamine
used on the first challenge day was not sufficiently high to reveal
sensitization, as the use of low doses of amphetamine for pre-
treatment and challenge sessions may compromise the ability to
detect sensitization (Kuczenski and Segal, 2001).

4.3. Locomotor activity on Challenge day 2

Adolescent and adult pre-treatment groups were challenged with
1.5 mg/kg of amphetamine on either P60 or P105, 27 days after pre-
treatment. At this time point, locomotor sensitization was observed
only in rats that were pre-treated with amphetamine in adolescence,
indicating that enhanced plasticity observed in adolescence was
associated with effects on locomotor activity that persisted into
adulthood. Although rapid sensitization to amphetamine during the
pre-treatment phase was observed in early adolescent rats, the
expression of lasting sensitization (i.e., P60, Challenge 2) also required
exposure to amphetamine in late adolescence (P45, Challenge 1).
These data suggest that enhanced sensitization in adulthood involves
a combinatorial effect of amphetamine treatment at the early and the
late stage of adolescence and that amphetamine treatment at either
stage alone is not sufficient for enhancing locomotor sensitization in
adulthood. We cannot rule out the possibility that increased
locomotor activity in amphetamine pre-treated adolescent rats at
least in part reflects an increase in conditioned locomotion because
we did not include an amphetamine pre-treated group that was
challenged with saline during the final test session. Nevertheless, we
did not find any evidence of conditioned locomotion in amphetamine
pre-treated rats that were given saline during the first challenge
session. Moreover, we did not find evidence of conditioned locomo-
tion in adult rats that were tested 9 days after pre-treatment with 5
injections of 1.0 mg/kg of amphetamine in late adolescence (Mathews
et al., 2008), which supports our contention that sensitization
observed in the present experiment is a reflection of amphetamine-
specific effects on locomotor activity.

Most studies of the long-lasting effects of psychostimulant
treatment in adolescence have used methylphenidate (Achat-Mendes
et al., 2003; Brandon et al., 2001; Burton et al., 2010), and those that
have examined the lasting effects of amphetamine (Kolta et al., 1990;
McPherson and Lawrence, 2005) and cocaine (Marin et al., 2008;
Ujike et al., 1995) have used high doses (2–10 mg/kg of amphet-
amine) and prolonged pre-treatment periods. Here, we show that
three days of low-dose amphetamine in adolescence are sufficient for
inducing sensitization in adulthood. This is an important point to
consider because many studies have reported age differences in the
locomotor activating effects of acute psychostimulant treatment
(Badanich et al., 2008; Bolanos et al., 1998; Lanier and Isaacson,
1977; Mathews and McCormick, 2007; Mathews et al., 2010, 2009),
but the age-specific impact of acute psychostimulant treatment on
subsequent drug responses has not been investigated thoroughly.
Moreover, there is a lack of studies that directly compare the effects of
amphetamine pre-treatment in adolescence and in adulthood. A
crucial advantage of including an adult pre-treatment group is the
ability to draw conclusions regarding effects that are unique to the
developmental period at which the treatment occurred. Evidence for
adolescence as a unique period of sensitivity during which exposure
to various environmental stimuli can alter vulnerability to drugs of
abuse is growing. Previous work from our lab has shown that
exposure to amild chronic social stressor throughout adolescence, but
not in adulthood, increases locomotor sensitization to amphetamine
in adulthood (Mathews et al., 2008; McCormick et al., 2005). Results
of the present study extend these findings by demonstrating that
three exposures to a relatively low dose of amphetamine adminis-
tered during adolescence can also produce lasting effects on
subsequent responses to amphetamine in adulthood. These data do
not suggest that sensitization does not develop in adulthood. In
fact, even a single pre-treatment with a high dose of 5.0 mg/kg
amphetamine has been shown to produce locomotor sensitization
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that increased with longer periods of withdrawal in adult rats
(Vanderschuren and Kalivas, 2000). Instead, our results highlight
the differential sensitivity of adolescents than adults for developing
sensitization, even when exposure involves few treatments at low
doses. One possible explanation for the lack of sensitization in adult
rats is that activity in adults is replaced by stereotypy, which would
cause a reduction in locomotor activity. However, this possibility is
unlikely, given that the pattern of locomotor activity in 5 min intervals
over the test session on the second challenge day did not differ for
adult rats that had repeatedly received amphetamine compared to the
rats that were receiving amphetamine for the first time.

One limitation of developmental comparisons such as in our study
is that controlling for the time interval between pre-treatment and
challenge results in a difference in age at time of challenge over and
above the manipulation of age at time of pre-treatment: Even though
all rats were adults for the final test day (Challenge 2), there is
nonetheless a 45 day age discrepancy that confounds direct compar-
isons of locomotor sensitization because of differences in basal
activity between young (P60) and older (P105) adults. For this
reason, it is critical that conclusions regarding age-specific pre-
treatment effects on locomotor sensitization are limited to compar-
isons of age-matched controls (within pre-treatment age groups).

5. Conclusion

Comparable to age differences in drug effects in people (Weiss
et al., 1994), adolescent and adult rats differ in sensitivity to initial
treatment with amphetamine. Acute amphetamine treatment pro-
duced adaptations that increased sensitivity to subsequent amphet-
amine treatment more readily in adolescent rats than in adults,
indicating that very few low-dose amphetamine exposures in
adolescence can have lasting consequences even though identical
pre-treatment in adulthood has no detectable effect. Enhanced
sensitization after adolescent pre-treatment in adulthood suggests
that adolescence, particularly the early period, may represent a
unique window of vulnerability to psychostimulants.
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